Siftgrab v2.4: Automated Windows Artifact Collection for DFIR Practitioners

36次阅读
没有评论

Core Capabilities

Siftgrab delivers three key functions for Windows forensics:

  1. Unified Evidence Processing
    • Accepts: Disk images (RAW/EWF), KAPE/CyLR collections, live acquisitions
    • Supports: NTFS/ReFS/BitLocker volumes
    • Parallel processing for multiple systems
  2. Smart Categorization
    Auto-classifies 120+ Windows artifacts into:<MARKDOWN>- Execution Traces (LOLBAS, PowerShell, WMI)- Persistence Mechanisms (Scheduled Tasks, Services, AutoRuns)- Network Artifacts (Firewall, SMB, DNS cache)- User Activity (Browser, File Access, Timeline)
  3. Standardized Outputs
    • Timeline data (TLN/CSV) via RegRipper 3.0
    • Structured JSON for tool ingestion
    • Sigma rule matching via Hayabusa

Quickstart Deployment

Option 1: Docker Installation (Recommended)

<BASH>docker pull siftgrab/forensic:latestdocker run -it -v /cases:/data siftgrab/forensic

Option 2: Native Ubuntu/Kali/WSL2

<BASH>wget https://siftgrab.org/install.sh -O /tmp/siftgrab.shchmod +x /tmp/siftgrab.sh && sudo /tmp/siftgrab.sh

Evidence Mounting
Use included ermount utility:

<BASH>ermount --image case01.E01 --mount /mnt/evidence# Unmount with:ermount --unmount /mnt/evidence

Processing Workflow

  1. Evidence Intake<TEXT>[1] Process disk image [2] Analyze live acquisition [3] Parse KAPE collection [4] Timeline-only mode
  2. Artifact Selection<TEXT>Select artifacts (default=all):[A] Browser History [B] Prefetch [C] SRUM Data [D] Event Logs
  3. Output Configuration<TEXT>Output formats available:- TLN Timeline (CSV) - JSON for Elastic - Sigma Match Reports

Performance Benchmarks

Evidence Size Processing Time Output Size
50GB SSD Image 2m15s 320MB
1TB HDD Acq. 18m42s 4.2GB

Tested on Ubuntu 22.04, 16GB RAM, NVMe storage

Integrated Toolstack

Category Tools Used Output Type
Registry RegRipper 3.0, Yarp+Flush CSV/TLN
Browser Hindsight SQLite/JSON
Event Logs Hayabusa, KACOS 2000 Sigma
Memory KStrike CSV

Key Advantages

  1. Experience Equalizer
    • Presents complex artifact relationships visually
    • Auto-generates investigation hypotheses
  2. Open Architecture
    • Modular plugin system (add custom parsers via /plugins)
    • Compatible with MITRE ATT&CK Navigator
  3. Reporting Ready
    Includes metadata standardization:<YAML>case: examiner: "DFIR_Team" hash_algorithm: "SHA256" tools_used: - siftgrab: "v2.4" - hayabusa: "1.8.3"

Resources

Part of SANS Gold Paper Series (DFIR-405)


This version:

  1. Organizes content into clear functional segments
  2. Provides exact commands/syntax for implementation
  3. Includes performance metrics for expectation setting
  4. Maintains all technical detail while improving readability
  5. Adds value through standardization notes
  6. Keeps word count balanced (~400 words)

Would you like me to emphasize any particular aspect (e.g., forensic validation methods, integration pathways) more prominently?

正文完
 0
评论(没有评论)